

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

In situ studies of coal pressurized with CO₂ by small angle X-ray scattering

Randall E. Winans, Soenke Seifert, Darren Locke X-ray Science Division, Advanced Photon Source

Tony H. Clemens CRL Energy Limited, New Zealand

Joseph Calo and Euan Bain Brown University

ACERC Conference 2010 February 25, 2010

Work at APS Supported by the Office of Science, Basic Energy Sciences, USDOE

New Zealand Foundation for Research, Science and Technology and New Zealand Industry Consortium US/NZ Bilateral Partnership for Climate Change Research

PROGRAMS

•In situ studies of nano catalysis – XSD, CSE, CNM

- •CO₂ uptake in coals XSD, CRL, Brown
- •Characterization of oil shales XSD, U. Utah, Chevron, BYU
- •Catalytic combustion XSD, U. Utah, Penn State, Cal Tech...

APPROACHES

•Global information – SAXS, PDF, SANS, XAFS, NMR

 Molecular Specific information – high resolution mass spectrometr GCMS of extracts

Tony Clemens CRL New Zealand 1951 - 2010

Direct Observation of CO₂ Injection into Coal using Small Angle X-Ray Scattering (SAXS)

Anthony H Clemens and Trevor W Matheson CRL Energy, Lower Hutt, New Zealand

Randall E. Winans and Söenke Seifert Argonne National Laboratory Argonne, Illinois, USA

Joseph Calo and Euan Bain Brown University Providence, Rhode Island, USA

2009 Pittsburgh Coal Conference

Purpose and Approach

Understand the mechanisms of CO₂ uptake in coals

- To develop a method for predicting CO₂ storage capacity in coal seams
- To link the method with existing techniques for predicting CO₂ storage capacity
- By the use of small angle X-ray scattering (SAXS) which allows for direct observation of changes in coal structure as CO₂ is injected under pressure

CO₂ and Coal Issues

It is thought that CO₂ dissolves in coal

Coal swells in CO₂

Pore structure of coals is variable (molecular to visible holes) and rank dependent – need to be able to access broad range of pore sizes (Angstroms -> microns)

Romanov, Vyacheslav N.; Goodman, Angela L.; Larsen, John W. Errors in CO2 Adsorption Measurements Caused by Coal Swelling. Energy & Fuels (2006), 20(1), 415-416.

Goodman, A. L.; Favors, R. N.; Hill, M. M.; Larsen, John W. Structure Changes in Pittsburgh No. 8 Coal Caused by Sorption of CO2 Gas. Energy & Fuels (2005), 19(4), 1759-1760.

Larsen, John W.. The effects of dissolved CO2 on coal structure and properties. International Journal of Coal Geology (2004), 57(1), 63-70.

Small Angle X-ray Scattering Analysis of Coal Structure

- SAXS provides pore size, size distribution, shape and surface morphology over broad length scales.
- SAXS is an in situ technique and can work with a variety of high pressure cells.
- SAXS has been used to follow changes in coal structure in gasification and solvent swelling.

Calo, J. M.; Hall, P. J.; Houtmann, S.; Lozano-Castello, D.; Winans, R. E.; Seifert, S. "Real time" determination of porosity development in carbons: A combined SAXS/TGA approach. Studies in Surface Science and Catalysis (2002), 144(Characterization of Porous Solids VI), 59-66.

What does small angle scattering measure ?

SAXS Instruments at 12-ID APS

www.anl.gov/PCS/

Coal Seam	Rank	No	%C	O/1000C	N/1000C	S/1000C
Beulah-Zap	Lignite	8	74.1	210	14	3.6
Wyodak-Anderson	Subbituminous	2	76.0	180	13	2.3
Illinois No. 6	hvC Bituminous	3	80.7	130	15	11.5
Blind Canyon	hv Bituminous	6	81.3	110	17	1.7
Pittsburgh No. 8	hvA Bituminous	4	85.0	80	17	4.0
Lewiston-stockton	hvA Bituminous	7	85.5	90	16	3.0
Upper Freeport	mv Bituminous	1	88.1	70	15	3.2
Pocahontas	lv Bituminous	5	91.8	20	13	2.1

>35,000 Samples shipped world wide

Coal Properties

Coal	Rank	%C (daf)	%H (daf)	%N (daf)	%S (daf)	%O (daf)	% ash	%H ₂ O	CO ₂ (m³/t)	f _a
Mataura	Lignite	68.8	5.01	0.73	0.89	24.6	7.23	42.6	<1(<2)	0.62
Hawkdun	Lignite	69.2	5.16	0.64	0.62	24.4	4.71	40.5	12 (18)	0.53
Maramarua	Subbituminous	75.0	5.23	1.26	0.17	18.4	4.10	26.9	14 (18)	0.65
Ohai	Subbituminous	75.3	4.36	1.31	0.42	18.6	4.16	23.1	21 (27)	0.70
Illinois 6	hvC bituminous	77.7	5.00	1.12	2.38	13.5	15.5	7.97	20	0.72
Pittsburgh 8	hvA bituminous	83.2	5.32	1.64	0.89	8.83	9.25	1.65	21	0.75
Upper Freeport	mv Bituminous	85.5	4.70	1.55	0.74	7.51	13.8	1.13	21	0.81

 CO_2 - records data obtained by CO_2 absorbance measurements at 3 MPa (5 MPa) for the New Zealand coals ⁶ and at 3 MPa for the Argonne coals ^{7,8.}

 F_a - refers to the degree of aromaticity of the coal by ¹³C solid NMR ^{9,10}

Ohai Subbituminous Coal

CO₂ increased from 150 to 800 psi, CO₂ blank subtracted

Ohai Coal - Schulz Polydispersed Spheres

Ohai Coal - Schulz Polydispersed Spheres

Coal	CO ₂ adsorbed (m ³ /t, 50 atm)	SAXS Results
Ohai (subbit)	27	Overall porosity decrease Small Pore increase in size
Maramarua (subbit)	18	Some pore decrease
Hawkdun (lignite)	17	Slight large pore collapse
Mataura (lignite)	Very low	No large pore change

*CO₂ Absorbed – CRL Energy Report 04-11043

Illinois No. 6 Bituminous Coal – APCS 3

Fit to Schultz polydisperse sphere form factor

Comparison of Three Coals at 800 psi

WyoDak (APCS 2) with Argon

SAXS Instruments at 12-ID APS

New Zealand Ohai Subituminous Coals – 800 psi

Illinois 6 Coal – 800 psi

Upper Freeport APCS 1 – 800 psi

Invariant Calculated for Coals at 900 psi

1 - 1

Maramarua S1

Upper Freeport APCS 1 – 800 psi

Scattering intensity of the APCS 1 coal following depressurization of the sample cell to atmospheric pressure air from 800 psig CO2 at ambient temperature.

Upper Freeport APCS 1 – 800 psi - Invariant

SAXS Calculated from Coal Models

SAXS calculated using CRYSOL

Svergun D.I., Barberato C. & Koch M.H.J. (1995) J. Appl. Cryst., 28, 768-773.

Models from:

Narkiewicz, M. R. and Mathews, J. P. Visualization of carbon dioxide sequestration issues within coal using a molecular representation of Pocahontas No. 3 coal, 12th International Conference on Coal Science and Technology, 2005, October 9-14, Okinawa, Japan, *Energy & Fuels* 2008, *22*, 3104–3111

- In short times of exposure to CO₂ the PDF results suggest that there are no changes in short length scales.
- In higher rank coals observed a slow uptake of CO₂ with a decrease in porosity.
- Model for CO₂ uptake in a high rank coal qualitative agrees with SAXS results
- Rank dependence is again observed in long exposures to CO₂
- The CO₂ uptake process can be interpreted in terms of a simplified twophase model beginning with shorter term void/pore filling and gas adsorption onto the solid matrix followed by longer term coal swelling

- Expand the coal set and the experimental parameters (pore size range, temperature, pressure and time).
- Look at PDF experiment over longer exposure times.
- Correlate with CO₂ uptake volume measurements obtained by other methods.
- Study the uptake and expulsion of CH_4 .
- Use these results in combination with other approaches to predict sequestration behavior of selected coal seams.

